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Rigorous Analysis of the Step Discontinuity in
a Planar Dielectric Waveguide

T. E. ROZZI, SENIOR MEMBER, IEEE

Abstract—Planar dielectric waveguides play an important role in elec-
trooptics and in the submillimeter regions. In many laser configurations
and integrated optical components, grooves are etched in the planar
surface or overlays are deposited on it. The step is an idealization of such
discontinuity. In this paper, the problem of an arbitrary large step under
multimode excitation is solved by means of a rigorous variational ap-
proach. A rapidly converging expression for the scattering matrix of the
step is derived, which is analogous to the one previously derived for
transverse discontinuities in closed waveguides. Two choices as to the basis
functions are compared: one is constituted by optimally scaled Laguerre
functions and the other by the surface waves of both slabs complemented
by Laguerre functions. Both the electric field and the magnetic field
formulations of the problem have been investigated for the TE case.
Numerical results are presented for the scattering matrix of the step under
monomode and muitimode excitation as well as for its radiation pattern.
The accuracy and limitations of existing small step approximations are
discussed. The technique is applicable to other transverse discontinuities in
open structures.

I. INTRODUCTION

HE STEP in a dielectric slab waveguide is a basic
discontinuity occurring in various optical and milli-
meter wave components, such as distributed feedback
lasers, gratings, transformers, antenna feeds, and others.
For small steps at the junction of two monomode slabs, a
simple and effective approximation has been derived by
Marcuse [1]. Clarricoats and Sharpe [2] have applied dis-
crete mode matching to the surface waves at either side of
a small step. Hockham and Sharpe [3] have presented a
first-order variational solution also valid for small steps.
For the problem of arbitrarily large steps, where apprecia-
ble coupling takes place between the surface waves and
the radiation spectrum, no accurate treatment is available.
Owing to the presence of the continuous spectrum, the
method of discrete mode matching is intrinsically ill-
suited for dealing with discontinuities in open waveguides.
In order to make the continuous spectrum discrete, the
use of a Laguerre transform of the wavenumber has been
proposed by Mahmoud and Beal [4], without, however,
demonstrating the proper convergence of the technique.
The introduction of a metallic enclosure, as proposed by
Kharadhly [5], is adequate in some respects, but not in
others, as, apart from enhanced relative convergence diffi-
culties, this modification alters essentially the boundary
condition for radiation, as discussed by Schevchenko [6]
and Mittra and Lee [7]. Techniques based on the integral
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equation approach instead are better suited for this type
of problems, as they are capable, in principle, of taking
due account of the radiation spectrum and do not suffer
from “relative convergence” difficulties. A rigorous tech-
nique, based on the Ritz—Galerkin (RG) variational ap-
proach, has been developed previously for dealing with
discontinuities in closed homogeneous waveguides under
multimode excitation [8], [9].

In the present contribution it is shown how the above
technique allows a natural extension to the case of open
dielectric waveguides, as it makes no essential distinction
between discrete and continuous spectrum. The whole
spectrum comprises three contributions, the surface waves
(discrete), the radiative part of the continuous spectruin,
and the reactive part of the continuous spectrum. The first
of the three corresponds directly to the propagating modes
in a closed waveguide. The last are attenuated in the
direction of propagation and represent energy storage in
the neighborhood of the discontinuity. The radiative part
of the continuous spectrum, however, propagates and
represents loss and/or coupling to the surroundings. In
the present discussion we will consider the radiation con-
dition to be satisfied.

A consequence of the lossy nature of the problem
concerns the convergence of the RG solution. Unlike in
the case of a closed, lossless waveguide, the Green’s
matrix is here symmetric and complex. The extremum
property of the solution is consequently replaced by the
weaker property of stationarity. This implies that the
solution will not converge in a monotonic fashion with
increasing order, and also that the electric/magnetic field
formulations do not yield upper/lower bounds. However,
using a reasonable choice of the expanding functions, the
oscillation of the solution decreases rapidly with increas-
ing order, and convergence is rapidly achieved. The elec-
tric field and magnetic field formulations of the problem
are numerically compared, although a detailed discussion
is only given for the latter. Also, two choices of the
sequence of expanding functions for the RG procedure
are introduced, namely the Laguerre functions with opti-
mally chosen scale factor and the sequence obtained by
complementing the surface waves by Laguerre functions.
In order to minimize the details, even type TE excitation
of a symmetric step is considered. The slab is assumed to
be lossless. The extension to asymmetric steps presents no
difficulty. The extension to the TM case is nontrivial, but
the necessary modifications can be deduced from [10].
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Fig. 1. Step geometry.

II. WAVEGUIDE MODES

The longitudinal section of the symmetric slab is shown
in Fig. 1. The structure is uniform in the y-direction, not
shown. The transverse components of the TE field are E,
and H,.

A.  Surface Waves

After suppressing a propagation factor e/“'~#9 these
are given by

E,o(x)=u(x) (1)
H,(x)=—You(x) (2
with
_B _
Yo bo=1/2, ©)

For symmetric modes in waveguide I, we need only con-
sider x > 0. The scalar function u is given by

u(x)=acoskx, x<d

=qgcoskde ¢4, x>d

4
where a is a normalization constant and the wavenumbers
x and y satisfy the eigenvalue equation
Kk tan kd=1y )
as well as the conservation of the wavenumber
12+ y2=(nf—nd)k=10? 6)
while
Br=niki—k*=nk2+y2
The normalization constant a is determined by the re-
quirement

fo P ut(x)dx =1 Q)

_ 2
a= d+1/y

Analogous expressions hold in guide II, when d is re-
placed by D,

to be

®)

B.  Continuous Spectrum

The continuous spectrum, together with the surface
waves, constitutes a complete representation of a physical
field in the slab [1], [6]. Again, after suppressing the
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propagation factor, E, is given by E, = ¢(x,p), where

1
— COS ox,

e(xp)=\~ < x<d
2
=\, °os [o(x—d)+a], x>d (9)
where
0<p<oo
o?=v*+p? (10)
—tan—1 [ O : -
a=tan (ptanad), (})1_1)1})0[ pd) (11)
0 2 - 1/2
c=[1+ —) sin? od (12)
while

B2 =ik~ 0= niki—p”

The transverse part of the magnetic field is given by

H, =~ ——o(x,p), where
Zo(P)
W,
Zy= e p<nyk,
Vr3ks —p?
)
= j¢, p>nykg. (13)
Vp? = niky
The normalization is
A ’ 7
S dxo(xp)o(x.p)=5(0—p). (14)
For later use, we note that as p?>>v? we have
o—p;, C—l; a—pd (15)

o(x,0)—>9>(x,p)= V% cospx, 0<x<oo (16)

i.e., the modes of the continuous spectrum become stand-
ing plane waves in a half space, while 8— —jp, with the
effect of the dielectric interface having disappeared. Anal-
ogous expressions hold for the continuous spectrum
Y(x,p) of guide II, after replacement of & by D.

HI. VARIATIONAL FORMULATION AND RG
SOLUTION FOR SURFACE WAVE INCIDENCE

Let us consider the case where n, surface wave modes
are propagating in guide I to the left of the discontinuity
and n, modes in guide II to the right. The discontinuity
has then n,4+ n,=n, “accessible modes” characterized by
the functions {#(x): 1<k <n}. Our aim is to describe
the discontinuity as an », port, as shown in Fig. 2, by
means of its scattering matrix. The electric field ampli-
tudes of the incoming and reflected waves at z=0 are
expressed by the vectors 4, B, respectively. Let b(p) de-
note the amplitude of the scattered modes of the continu-
ous spectrum in region I and d(p) that in region Il
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Fig. 2. Schematic multiport representation of the step discontinuity.

Continuity of E, at z=0 is expressed as
ny 0
E= 3 (At Bu()+ [~ dpb()Zo(o)o(x,p)
=1

(A + Bu(x)+ [ dod(0) Zo(0)¥(x,p).
k=n+1 0
(17)

Similarly, the continuity of H, yields

Ho= 3 (4= BJu()+ [ “dobo)olxp)

n,

- 3

k=n+1

1 o0
— 57— (=4, + BJu(x)~ [~ dpd(p)y(x.p).
Zok 0
(18)
The wave amplitudes in (17) can be determined from

(18) by multiplying by u,, @, ¢ in turn, integrating over x,
and using orthogonality:

b(p)= [ plx.p) H(x)d (19)

d(e) =~ [ " 9(x.p) H(x)dx (20)

Bk=Ak—SkZOkfoodx u(x) H(x) (21)
0

where s, = F 1, according to k < n, (left- or right-hand
side). Hence, after substituting (19)~(21) in (17) and re-
arranging, we obtain the integral equation for the mag-
netic field

n,

S s (x)= "L () (22)
k=1 0
with
Z(x,x")= %{ 2 Zow () u(x7)
k=1

+ fo ooahr)Z<>(f>)[qv(x,p)w(x'uo)+\lf(x,»r))tlf(X’,p)] }

(23)

The above is the electric Green’s function of the prob-
lem in the scattering formulation. Through (21) and (22) a
linear relationship is introduced between the amplitude
vectors A and B. The matrix § such that B=S4 is the
sought unnormalized scattering matrix. Hence, for 4,=1,
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Ay;=0, we have S;;= B,. Define
h[EHx(A1=1;Ak#1<O). (24)
The magnetic field at the discontinuity can be obtained by
superposition:
H,(x)= 1% Ahy(x). (25)
Under the conditions (24), the integral equation (22) re-
duces to the set of #; integral equations

s,u,(x)=](;°°dx’ Z(x,x"Vh(x).

From a knowledge of the 4’s, the unnormalized scattering
matrix can be determined by imposing the port conditions
(24) on (21):

Sp =6~ SkZOkfo w(x)hy(x)dx.

The integral equations (26) cannot yet be solved ana-
lytically. Using the RG wvariational procedure, however,
we can approach the solution as closely as desired. Let us
introduce first an orthonormal basis {L(x), n=0,---} of
“good functions” [11] in the interval 0 <x < co (in fact, a
complete sequence is sufficient). Using this sequence, we
can express u; as

(26)

27)

(= 3 0ul,() (@)
with
0, = [o L (x)u(x)dx. (29)
Also we have
#(x0)= 3 P(pid)L,(x) (30)
where
P(p:d)= [ " dxg(x.p)L,(x) (31)
Wep= 3 REDILE) @)
where
B3 D)= [ " dxd(x,p) L, (x) (33)
and
T (x,x) = mioz,,,,,Lm(x)L,,(x') (34)
with

z,= fo " dx fo " dx’ L (x)Z(x,x") L, (x")
1 0
=35 { % Zok Qontc Qe + fo dp Zy(p)

[Balpid) Pu(pid) + P, D), (i D)] . (35)
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According to (28), (30), (32), and (34), and by means of
the sequence of expanding functions (SEF) {L,}, the
functions #,(x), @(x,p), and Y(x,p) map onto the infinite
column vectors Q,, P(p;d), P(p; D), respectively, whereas
the Green’s function maps onto the matrix Z. The second
equation in (35) implies interchanging the order of in-
tegration over p and x. This is permissible inasmuch as &
is a distribution and the L,’s are “good functions.”

In the RG approach, infinite vectors and matrices are .

replaced by their finite truncations (0 <7 <N). Hence, the

integral equation (26) becomes the finite matrix equation

5;0=2Z\, (36)

where the vector A, stands for the expansion of the
unknown function A, and from (27), the RG variational
expression for the unnormalized scattering matrix of the
discontinuity is

Skt = O — S5 Z o QkT‘Z - l'Q/ (37)

which is analogous to the expressions for closed wave-

guides [8] and enjoys variational properties.

Because of the complex nature of the matrix Z, how-
ever, the exact solution is neither a maximum or a mini-
mum, The normalized scattering matrix is defined for unit
resistance terminations at the ports, while the n; accessible
ports of Fig. 2 are closed by the impedances Z;,. In order
to pass to the proper impedance normalization, an ideal
transformer must be connected at each port. Define

Zo=diag (ZOk)’ k= 1, MY /] (38)
then the normalized scattering matrix is given by
§=2,12827)? (39)
or
Sa=8u— 55V ZuZy Q-Z7"Q (40)

which displays the symmetry required by the reciprocity
of the junction. The magnetic field at the discontinuity
can be derived from (25) and (36).

A similar analysis can be carried out starting again
from (17) and (18) but using the electric field E, instead of
the magnetic field H,. However, attention now must be
paid to the mathematically nontrivial problem of the
proper convergence of the integral over p. The details are
omitted for the sake of brevity.

IV. SCATTERING OF INCIDENT RADIATION AND
COUPLING OF SURFACE WAVES TO THE CONTINUOUS
SPECTRUM

The preceding formulation is easily extended to the case
where radiation is incident on the discontinuity. Consider
a real wave packet incident from the left, at z=0. This
can be expressed in terms of the radiation spectrum for
z<0.

f(x)= fo * dpa(p)p(x,p). (41)
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The field can also be expanded as

)= 3 £L,() @)

where

hy=J a0 L, ()= [“dpa(o)P,(p:d).  (43)

Owing to orthogonality, it is possible to consider any
component of (41) as corresponding to an individual port
of a continuous set merging into one “continuous port.”
Retracing the derivation of the previous section, it is
possible to deduce the unnormalized scattering coefficient
of a p component into the surface waves and of two
components, say, p and p’, among themselves. In the
magnetic field formulation, these are, respectively,

Skp == SkspZOp QkT.Z— I'P(P, g)

«(s,= ¥ 1 according as d or D are chosen) (44)
and

8o . d\g-ipfy. d
Spe= 80— =s5,5,P7(p: ¢ }2-P(p; 4). (45)

Unnormalized scattering coefficients are employed so as
to avoid the question of complex normalization for im-

aginary Zq(p).

V. THE DISCRETE REPRESENTATION

A. Laguerre Functions as an Expanding Set

An appropriate complete set of “good functions” is
provided by the normalized Laguerre functions

=L (X, n=012-
{Ln(x)_\/x—o Ln(xo)e 2xq 5 n—0,1,2, ]
(46)
with
f PL,(x)L,(x)dx=8,,. (@7)
0

The arbitrary scale parameter x, can be adjusted so as to
improve convergence, as will be discussed below. The
coefficients of the expansions (28), (30), and (32) in terms
of the above SEF can be determined analytically and are
given in Appendix I. A similar expansion holds for the
continuous spectrum in the limit of “lightly trapped
waves” (16):

@=(x,p)= ; P (p)L,(x). (48)
The P* coefficients are also given in Appendix I.

We shall now proceed to determine the scale parameter
X, in (46). For a given truncation N of the expansion (28)
(N+1 is just the order of the variational solution), it is
clearly important to be able to represent as closely as
possible the accessible modes. If the latter are n; surface
waves, the error function
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n, N
Q()=1-— 3 S 0i(x)>0  (@9)

k=1 n=

gives a measure of the incompleteness of the representa-
tion. Requiring €; to be a minimum yields an “optimum”
value for x,. The choice of optimization criteria is by no
means unique, and other more elaborate approaches in-
volving the continuum have, in fact, been tested, without
achieving, however, any significant improvement. The
computation of the Green’s matrices for the magnetic
field formulation in terms of SEF (46) is further discussed
in Appendix III.

B. An Alternative SEF

The RG procedure does not require an orthonormal
SEF. Completeness is sufficient. In this connection, it is
interesting to examine the performance of an alternative
complete, nonorthonormal sequence. When the step is
excited by a given surface wave, it is reasonable, for small
steps, to take the incident surface wave as a trial field,
because radiation takes place mainly in the forward direc-
tion, and mode mixing is small.

The obvious extension of the argument is to take the »;
surface waves, propagating at both sides of the step, as the
first n; functions of the SEF. The sequence is comple-
mented by the Laguerre functions up to the chosen order
of the variational solution W, i.e.,

’un,’LOs' . ,L]V—n,—l}‘ (50)

Using the above set, straightforward integration yields
the amplitudes of the expansion of the surface waves

{gn:1<n<ﬁ}5{ub...

G = [ ety (X)) (51)
and that of the continuous spectrum
Pa(0)= [ 9(x,0)g,(x)dx (52)
0
)= [ T(x,p)g,(x)dx. (53)
0

The above expansions are given explicitly in Appendix II.
The Green’s matrix for the magnetic field formulation,
analogous to (35), becomes

1] < o
Zmn =35 2 Zqukmqkn + f deO(p)[pm(p)pn(p)
2 k=1 0

+2,.(0)p;(p) ] } (54)

The performance of the above set and of that of Section
V-A are compared in Section VIL.

The scale parameter x, still occurs in (50). Its optimiza-
tion takes place according to the following criterion. As
the surface waves constitute the first n; functions of the
sequence, it is required that the remaining functions
Ly, Lyg_,_, be as close to orthogonal as possible to
the former.
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VI

The radiation loss of the step can be computed directly
from a knowledge of the scattering matrix (40). In terms
of the amplitudes of the incoming surface waves, given by
the vector 4 and of the outgoing surface waves (vector B)
the loss is given by

RADIATION AT THE STEP

W=4(4%Z;'A-B*-Z;'-B) (55)
where + denotes Hermitian conjugation. By means of
(18)—(21) and (25), it can be shown that the above expres-
sion is identical to that obtained from a consideration of
the Poynting vector of the radiation spectrum, which, in
turn, is identical to the integral of the power density over
the radiative part of the spectrum (p <n,k).

The computation of the far field is based on a saddle
point evaluation of the far field in each half-space. From
(9) and (17) and in account of the even parity with respect
to p, the y-component of the electric field of the con-
tinuum spectrum can be written as

roo  dp) iogx-
ER(x,Z)="“aﬂ dp__e Flo(x d)+a(p)+Bz].
7 V2 Y~ B(p)
(56)
Passing to polar coordinates,
x=rsinf#, z=rcosb
p=mkysinw, B=nkycosw (57)
(56) becomes
Wy 7T i _
ER xX,z)= 3 TI® dw f(w)e Frmkocos (w 9)(58
. (x,2) wa_z_,.w f(w) (58)
2
where

f(w)=d(n,K, sin w)e ~/12(+) = nkod sinw] (59)

In the limit kyr>>1, the far field can be evaluated by the
saddle-point method after deforming the integration path
in the complex w-plane into a steepest descent contour
(SDC), as described in [12, pp. 459-470] and [6, pp.
108-112]. Care, however, must be taken that in deforming
the contour no singularity is crossed in the w-plane. These
are of two kinds: branch lines or poles (improper modes).
The former kind occurs at w= + /2, where dp/dw=0.
Hence we must keep |@|<w/2. Poles corresponding to
improper modes are crossed for ¢ smaller than some
critical angle. In the same interval of angles, however, the
improper modes make no contribution to the radiation
field, as their field tends exponentially to zero for increas-
ing r. The far field outside the slab is then given by

Ef(r,o)/wuoﬂ/ﬁ f®)ema=5)  (60)

and the radiation pattern is proportional to |d[? i.e., the
spectral power density of the radiation modes. Analogous
considerations hold for z <0.
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TABLEI
SCATTERING MATRIX OF STEP BETWEEN MONOMODE
SLABS—ORTHONORMAL BAsits OF SECTION V-A: MAGNETIC FIELD
FORMULATION; d/D =02, nykyD=1,0D=2

N I 1% <ty - miRAD ) iT1% 4T IMp{% <M RADLOSS%
0 20,88 -.0865 94,22  ~-.0149  26.55 .0413 6.87
1 20.77 -.0920 93.77 -.0135 25.28 ,0540 7.77
2 20.72 -.1038 93.70 -.0099  24.73 .0532 7.92
3 20.49 -.0802 94.10  -~.0096 24.82 .0648 7.25
4 20.36 -.0832 94,14  -.0082 24.83 .0737 7.13
5 20.41 -.0859 94,15  -.0076 24.79 .0759 7.19
6 20.40 -.0858 94,15 ~.0076 24.78 .0759 7.19
7 20.40 ~.0858 g4.16 ~-.0075 24.79 0763 7.18
8 20.40 -.0860 94,16  -.0075 24.79 .0764 7.18
4} 20.4%0 -.0860 94.16 ~.0075 24.79  .0764 7.18
TABLE I1

SCATTERING MATRIX OF STEP BETWEEN MONOMODE
SLABS—ORTHONORMAL BAsIs OF SECTION V-B: ELECTRIC FIELD
FORMULATION; d/D =02, nykgD=1,vD =2

N IMy1% Py -wRAD)  ITI% <7 1% <fr;  RAD LOSS%
0 22.56 -.0704 96.99 .0205 21.50  .1159 0.83
1 19.66  -.0593 94,52 L0055 23.24 L1813 6.80
2 20.35 -.0868 93.78  -.015% 25.05 L0832 7.92
3 20.52  -.0640 94.35 -,0018 24.51  .0610 6.72
4 20.28 -.0698 94.10  -.0038 24.80  .0663 7.3
5 20.69 -.0923 94,44 -,0084 24.52 0866 6.53
6 20.14 -.0771 93.91 -.0059 25.02  .0763 7.76
7 20.45 -.1001 g4.22 -.0103 24.72  .0879 7.05
8 20,33 -.0738 94.07 -.0050 24.88 L0693 7.37
VII. EXAMPLES AND NUMERICAL RESULTS

A. Accuracy Tests and Convergence of the Variational
Solution

The results of a convergence test for a large step discon-
tinuity are presented in Table 1. For the choice of the
parameters in the table, both slabs are single moded. The
radiation losses refer to incidence from the left. The
radiation losses for incidence from the right are easily
deduced from these data. For N=8§, all the above quanti-
ties, which completely characterize the junction, have
reached their convergence values within four significant
figures. For the sake of comparison, the same quantities
were computed using the same basis but in the electric
field formulation. The results are shown in Table II. As
expected, from the distributional character of the Green’s
function, the convergence is slower in this formulation.
On account of this, all the following results were com-
puted using the magnetic field formulation.

It is also interesting to carry out the same computation
utilizing the complete, but not orthonormal basis dis-
cussed in Section V-B. The results are shown in Table III.
In particular, N =0 means that the discontinuity field is
assumed to be that of the incoming surface wave. This
commonly used approximation is inadequate for sizeable
steps. A considerably better approximation is provided by
assuming the discontinuity field to be a linear combina-
tion of the incident and transmitted surface waves (N =1).
For N=6, the results are virtually identical to those of
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Fig. 3. Transverse eclectric field at discontinuity nko,D=1, vD=2,
d/D=02.

TABLE II1
SCATTERING MATRIX OF STEP BETWEEN MONOMODE
SLABS—NONORTHONORMAL BASIS OF SECTION VI: MAGNETIC
FieLp FORMULATION; d/ D =02, n,koD =1; (n? — nd)kiD?=4

NoInke  $r-wred) T T Inln s, RAD LOSS*,
0 19.68 ~-.1282 91.33 -.0210 30.27 .0485 12.7
1 20.54 -.0779 93,92 -.0097 24.43 L0650 7.57
2 20.61 -.0840 93.87 -.0084 24.39 ,0697 7.64
3 20.42 -.0825 94.13 -.0086 24.76 .0703 7.22
4 20.39 -.0835 94,17 -.0083 24.81 .0722 7.16
5 20.39 -.0862 94.16 -.0074 24,79 0765 7.18
6 20.40 -.0861 94.16 -.0075 24.78 0764 7.18
7 20.40 -.0862 94,16 -.0074 24.78 0766 7.19
8 20.40 -.0861 94,16 -.0075 24.79 .0765 7.18

Table I, considering the finite accuracy of the numerical
computation.

The set of Section V-A will be employed in the follow-
ing examples. The last test consisted in checking how well
the continuity of E, at z=0, as expressed by (17), was
satisfied by a given variational solution of the integral
equation (22) for H,. In Fig. 3 the moduli of E, at either
side of the step are plotted versus x/D for N=0.5. In the
latter case, the two curves are no longer distinguishable.
For reference, the surface wave fields wu,,u, are also
plotted.

B.  Examples

The variation of the scattering matrix of the step for
varying width of the smaller guide 4 is illustrated in Figs.
4 and 5. Fig. 4 shows the moduli of the reflection and
transmission coefficients, as well as the radiation losses of
the step. Since this example refers to fairly high refractive
slabs in air, radiation losses are low for less than sizeable
steps. Up to moderate steps (d/ D =0.5), for the present
values of the parameters, the moduli of the reflection
coefficients for incidence from the left (I')) and from the
right (I';) are virtually identical. Their value is closely
approximated by the reflection coefficient of an ideal
admittance step without mode conversion

_,31—:82

L=-Ti=%73"

(61)
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Fig. 4. Amplitudes of the reflection and transmission coefficients of a
step between monomode slabs and radiation losses versus step height L
N=5, njkyD=1, vD=2.
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Fig. 6. Convergence of the radiation pattern (incidence from left) for

100 E Two-port scattering matrix of step increasing order of the variational solution nykoD =1, vD=2.
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Fig. 5. Phases of the reflection and transmission coefficients of the step
of Fig. 4. 03f JSzz |
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As d decreases, |I',| keeps increasing in excess of the 02f ,’ -
above approximation up to its limiting value, the reflec- ! ISyl
tion from a semi-infinite slab. |T',| keeps increasing below 01 -,’ 1Sl
(61). Then, after going though a maximum, it goes to zero, 1 z
! 1 i 1 .l i

as it should, since the surface wave is no longer guided for
d=0. The transmission coefficient also decreases for in-
creasing step size, since the energy increasingly leaks out
in the f_orm of radiation, as can be seen from the plots of Fig. 7. Amplitude of the elements of the scattering matrix of a multi-
the radiation loss. mode step versus oD, nykyD=1, N=5.
The argument of the reflection coefficent, given in Fig.

5, is not negligible, even for small steps. It is noteworthy The behavior of the step discontinuity under multimode
that in the region where the phase goes through two excitation is illustrated in Fig. 7, where the moduli of the
turning points, the accurate variational solution predicts a elements of the scattering matrix are plotted versus the
sizeable deviation of the modulus of the transmission “normalized frequency” oD =(n?—n})/%,D. As v in-
coefficient from the “mode projection” approximation of creases beyond vD = 7, the thicker slab allows two modes
[1], which is otherwise quite fair, even for large steps. The to propagate, whereas the thinner slab remains mono-
phase of the transmission coefficient is rather small, in mode. Even before the cutoff value is reached, the immi-
this case less than 0.01 rad. The angular dependence of nent presence of the second mode is felt, as shown by the
the radiation pattern is illustrated in Fig. 6 for N=0, 5, 8. inflection of |S,,| and |S,,| for incidence from the left
Unit incidence from the left is assumed. While the only (port 1). This is accompanied by increasing radiation
peak is indeed forward, backscattered radiation is not losses. Similar features reappear around vD =2#, where a
negligible. third mode can propagate in the thicker slab.

6 1t 2 3 4 5 6
vD= (n? -n%)"2keD —
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The scattering of TE modes by a symmetric step dis-
continuity in a planar dielectric waveguide has been
treated by means of a rigorous variational solution. Two
sequences of expanding functions have been investigated.
The numerical examples demonstrate that rapid conver-
gence is achieved, using either of the two choices when
adopting a magnetic field formulation. Resuits are pre-
sented on the scattering of surface waves for varying step
ratio and “normalized” frequency. Also the limitations of
small step approximations, particularly with regard to
phase and radiation properties, are illustrated.

In particular, the results on the radiation characteristics
show that backward radiation cannot be neglected for
sizeable steps. An accurate analysis like the one presented
becomes mandatory when dealing with large steps, with
multiple interacting steps, even if the steps are moderate,
or with multiple surface wave excitation. The extension to
asymmetric steps presents no difficulty. The same tech-
nique can also be applied to other important discontinui-
ties in dielectric waveguides.

CONCLUSION

APPENDIX 1
THE COEFFICIENTS P, AND Q, OF SECTION V-A

From [12, pp. 92, 844, and 1037}, after some algebra, we
obtain

Px(p)= V (=
cos [(2n+1) tan™" 2kx, ]
(1 +x22)"

+ é (—1)ke™ 5 L (i)

Xo

,cos [(2n+1) tan™" 2px, ]

1/2
(5403 )
(A1)

Q,=aVxy,{(—1)"

cos kd

(% + X

P(p;d)= V

cos [(k+1) tan " 2kxy+ Kd |
— (l + szg)(k+l)/2
1

)k+1
(A2)

- 1) cos (2n+1) tan™ ! 20x,
(Z + o2x(2))1/2

-+

»
I M=

a2k [ 4
( l)e 2)‘ol‘n—k(xo

0 (%+p2x(2))(k+l)/2

1 cos [(k+1)tan"! 20x,+ od
s [( ) (k+1)/20 ] : (A3)
(}+ozx§)

d ){ cos [(k+1) tan™"! 2px+
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The finite sum in (A3) goes rapidly to zero for increasing
so that for p2>v?, (A3) reduces to (Al).

APPENDIX I1
THE COEFFICIENTS ¢, p, p’, OF SECTION V-B

The elements of the expansion in terms of the set of
Section V-B are

G =0, s 1<m<n, 1<n<n
sin (k,, + & )d sin (k,,— k,)d
=a,a,=
" "2 K,, + K, K, — K,
cos K, d

[e™“=P)(~y,, cos k,D+x, sin «,D )
Yot K

+ ¥, €08 (x,d ) — K, sin x,d |

e¥n(d=D >J’

€Os K,,d- cos Kk, D

Ym ¥ Yn
l<m<n m<n<ny
Onnon—1» 1<m<n, n<n<N
=9 Ops m<m<n, 1<n<n
Qu,m—1> m<m<n, m<n<n
2.(p)=0, 1<n<n
_a, 1 sin(xn+a)d+sin(xn—a)d
V2az C(p,d) k,+o K,— 0
+ < p [sin ((x,+p)D+8(p,d ))

—sin (x,d+a(p,d))]

TR
2 cos k,D
+=——"— [, cos ($(p,d ) +pD )
Tate

—psin (¥(p,d)+pD )]

2sm1?(p,d) d+D
- T i (o) 7 |
—d
-sin {(p—tc,,)D2 ]},
m<n<n, (A4)
where (3(p,d )= a(p,d)—pd).
P,(p)= n—1(Pad) n<n<N. (A5)
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P (o)= a, 1 sin (k, +0)d N sin (k, —0)d
m\Pr= V27T C(p9D) Kn+o Ky—0

+ 2cosk,d 1
C(p,D) yi+o*

2 cos k,d
vate’

— (o sin od— v, cos od ) | + t(d=D)

[ . cosa(p,D)-—psin(x(p,D)]], 1<n<ny

0, n<n<mn;
= — (A6)
P,_,_1p,D), m<n<N.
ApPENDIX 1T

COMPUTATION OF THE GREEN’S MATRIX

The computation of the Green matrices (35) requires
integration over an infinite interval. It is advantageous to
extract analytically the contribution of the integral for
large values of p. For the sake of compactness, define

L..(0)=P,(p;d)P,(p;d)+ P,(p; D)P,(0; D). (AT)

Let Z" denote the contribution of the continuous
spectrum in (35)

I
ZZr =wp'0fn2ko.L(p)_ dp

m 0 \hkE—p?
nyks—p

I d,
+jwu0 f Po mn (P) P

"2ko o — ks

where py»max(n,ky,v). The first integral represents the
contribution of the radiative part of the continuous
spectrum. The second integral and the last term represent
the contribution of the reactive part of the continuous
spectrum. The last term, in particular, is a purely induc-
tive asymptotic contribution. Noting that P(p;d), P(p; D)
—P>(p) as p?>0?, we have

. PX(0)P.>(p)
L, =2 f,, 0 —2E = dp.

+j wp’OLmn (AS)

(A9)

The above integral can be evaluated (thanks to [12, p.
143]) and the result is

[e»@=P)(g sin 6D~ v, cos oD)
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|m—n| m+n |m—nj—1
4 m n
Lmn=_(_1) * Xo 2 bk+ 2 bk+ 2 bk
T 4 k=1 k=1 k=1
m+n+1
+ > b, +4Incosecq,| (AlO)
k=1
where
po=tan"! 2p,x, (AlD)
bk=%[(-—l)k—cos2k<p0]. (A12)

The singularity in (A.5) is eliminated (and the computa-
tional efficiency improved) by setting:

p=nyk,sin ¢, p <nyk,
=n,k, cosh ¢, p > nyk,. (A13)
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