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Rigorous Analysis of the Step Discontinuity in
a Planar Dielectric Waveguide

T. E. ROZZI, SENIORMEMBER, lEEE

Abstruct-Phumr dielectric waveguides play an important role in ekc-

trooptics and in the submiffimeter regions. In many laser conjurations

and integrated optical components, grooves are etched in the planar
surface or overlays are deposited on it. The step is an idealisation of such

dkcontirmfty. In this paper, the problem of an arbitrary large step under
multimode excitation is solved by means of a rigorous variational ap

proacb. A rapidly converging expression for the scattering matrix of the
step is derfv~ which is analogous to the one previously derived for
transverse discontinuities in closed wavegoides. Two chokes as to the binds
functions are compare& one is constituted by optimally scafed Laguerre
functions and the other by the surface waves of both slabs complemented
by Laguerre functions. Both the electric field and the magnetic field
formulations of the problem have been investigated for the TE case.
Numerical results are presented for the scattering matrix of the step under

monomode and muftimode excitation as weff as for its radiation pattern,

The accuracy and limitations of existing small step approximations are

discussed. The technique is applicable to other transverse dfscontinuftfes in

open structures.

I. INTRODUCTION

T HE STEP in a dielectric slab waveguide is a basic

discontinuity occurring in various optical and milli-

meter wave components, such as distributed feedback

lasers, gratings, transformers, antenna feeds, and others.

For small steps at the junction of two monomode slabs, a

simple and effective approximation has been derived by

Marcuse [1]. Clarricoats and Sharpe [2] have applied dis-

crete mode matching to the surface waves at either side of

a small step. Hockham and Sharpe [3] have presented a

first- order variational solution also valid for small steps.

For the problem of arbitrarily large steps, where apprecia-

ble coupling takes place between the surface waves and

the radiation spectrum, no accurate treatment is available.

Owing to the presence of the continuous spectrum, the

method of discrete mode matching is intrinsically ill-

suited for dealing with discontinuities in open waveguides.

In order to make the continuous spectrum discrete, the

use of a Laguerre transform of the wavenumber has been

proposed by Mahmoud and Beal [4], without, however,

demonstrating the proper convergence of the technique.

The introduction of a metallic enclosure, as proposed by
Kharadhly [5], is adequate in some respects, but not in

others, as, apart from enhanced relative convergence diffi-

culties, this modification alters essentially the boundary
condition for radiation, as discussed by Schevchenko [6]

and Mittra and Lee [7]. Techniques based on the integral
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equation approach instead are better suited for this type

of problems, as they are capable, in principle, of taking

due account of the radiation spectrum and do not suffer

from “relative convergence” difficulties. A rigorous tech-

nique, based on the Ritz-Galerkin (RG) variational ap-

proach, has been developed previously for dealing with

discontinuities in closed homogeneous waveguides under

multimode excitation [8], [9].
In the present contribution it is shown how the above

technique allows a natural extension to the case of open

dielectric waveguides, as it makes no essential distinction

between discrete and continuous spectrum. The whole

spectrum comprises three contributions, the surface waves

(discrete), the radiative part of the continuous spectrum,

and the reactive part of the continuous spectrum. The first

of the three corresponds directly to the propagating modes

in a closed waveguide. The last are attenuated in the

direction of propagation and represent energy storage in

the neighborhood of the discontinuity. The radiative part

of the continuous spectrum, however, propagates and

represents loss and/or coupling to the surroundings. In

the present discussion we will consider the radiation con-

dition to be satisfied.

A consequence of the lossy nature of the problem

concerns the convergence of the RG solution. Unlike in

the case of a closed, lossless waveguide, the Green’s

matrix is here symmetric and complex. The extremum

property of the solution is consequently replaced by the
weaker property of stationarity. This implies that the

solution will not converge in a monotonic fashion with

increasing order, and also that the electric/magnetic field

formulations do not yield upper/lower bounds. However,

using a reasonable choice of the expanding functions, the

oscillation of the solution decreases rapidly with increas-

ing order, and convergence is rapidly achieved. The elec-

tric field and magnetic field formulations of the problem

are numerically compared, although a detailed discussion

is only given for the latter. Also, two choices of the
sequence of expanding functions for the RG procedure

are introduced, namely the Laguerre functions with opti-

mally chosen scale factor and the sequence obtained by

complementing the surface waves by Laguerre functions.

In order to minimize the details, even type TE excitation

of a symmetric step is considered. The slab is assumed to

be lossless. The extension to asymmetric steps presents no

difficulty. The extension to the TM case is nontrivial, but

the necessary modifications can be deduced from [10].
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Fig. 1. Step geometry.

II. WAVEGUIDE MODES

The longitudinal section of the symmetric slab is shown

in Fig. 1, The structure is uniform in the y-direction, not

shown. The transverse components of the TE field are EY

and HX.

A. Surface Waves

After suppressing a propagation factor #Uf ‘flz), these

are given by

Eye(x) = u(x) (1)

HX(X) = – YOU(X) (2)

with

Yo=~=l/z”.
Up.

(3)

For symmetric modes in waveguide I, we need only con-

sider x >0. The scalar function u is given by

u(x) = a Cos KX, x<d

=a cos Kde– Y(x–~J, x>d (4)

where a is a normalization constant and the wavenumbers

IC and y satisfy the eigenvalue equation

IC tan Kd= y (5)

as well as the conservation of the wavenumber

K2+y2=(n; –n;)k#=02 (6)

while

~2= n~k~ – K2= n~k~+ y2.

The normalization constant a is determined by the re-

quirement

~ ()
~u2x dx=l (7)

to be

r

2a=
d+l/y “

(8)

Analogous expressions hold in guide II, when d is re-

placed by D.

B. Continuous Spectrum

The continuous spectrum, together with the surface

waves, constitutes a complete representation of a physical

field in the slab [1], [6]. Again, after suppressing the
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propagation factor, EY is given by EY = 9(x, p), where

<

21
ql(x, p) = ; ~ Cos ox, x<d

—

. d: COS[p(x–d)+a], x>d

where

O<p<co

C#=oz+pz

~=tan–] (~tanod), (}~~=Pd)

(9)

(lo)

(11)

(12)

The transy part of the magnetic field is given by

— 9(x, p), where
‘x= – Zo(p)

‘0= &‘ ‘<n2k0

jupO

‘m ‘ “n2k0°

(13)

The normalization is

Jmdx9(x>P)9(xP’)= ~(P-P’). (14)
o

For later use, we note that as p2>> 02, we have

fJ+p; C+l; a-+pd (15)

f

2
r+(x, p)+q’qx, p) = ; Cos px, O<x<co (16)

i.e., the modes of the continuous spectrum become stand-

ing plane waves in a half space, while ~+ –jp, with the

effect of the dielectric interface having disappeared. Anal-

ogous

+(x,p)

expressions hold for the continuous spectrum

of guide II, after replacement of d by D.

III. VARIATIONAL FORMULATION AND RG

SOLUTION FOR SURFACE WAVE INCIDENCE

Let us consider the case where n, surface wave modes

are propagating in guide I to the left of the discontinuity

and n, modes in guide II to the right. The discontinuity

has then nl + n, = ni “accessible modes” characterized by

the functions { u~(x): 1 <k< ni}. Our aim is to describe
the discontinuity as an n, port, as shown in Fig. 2, by

means of its scattering matrix. The electric field ampli-

tudes of the incoming and reflected waves at z = O are

expressed by the vectors A, B, respectively. Let b(p) de-

note the amplitude of the scattered modes of the continu-

ous spectrum in region I and d(p) that in region II.



740 IEEE TRANSACTIONS ON MICROWAV13 TH@ORY AND TECHNIQUES, VOL. MTr-26, NO. 10, OCTOBER 1978

z~,,

z O,nr EtEl:
●

s:

Zl),nt+l

zO,fli

n,+l

n,

Fig. 2. Schematic multiport representation of the step discontinuity.

Continuity of EY at z = O is expressed as

= i (A,+ ql’d~) + ~niP4P)zo(P)wGP).
k=n,+l

(17)

Similarly, the continuity of HX yields

HX = ~ – ~(Ak – B&~(X) + ~m@(P)Q@,P)
k=l Ok

= k=;+, - +&k+ ‘k)”k(x)- ~m@@)$(X,d.

(18)

The wave amplitudes in (17) can be determined from

(18) by multiplying by ~k, q, + in turn, integrating over x,

and using orthogonality:

b(p) = ~~rp(x, p) HX(x)dx (19)

d(p) = – f ‘+(X, P)HX(X) dx (20)
o

Bk = Ak – skz~~ fmdW(@&(x) (21)

where Sk= T 1, according to k ~ nl (left- or right-hand

side). Hence, after substituting (1 9)–(21) in (17) and re-

arranging, we obtain the integral equation for the mag-

netic field

k:, ‘kAkuk(x)= [m~(X,X’)HX(X’)dX’ (22)

with

{
%(X,X’) = ; & Zok”k(x)uk(x’)

}
+JmdPzo(P)[9(x> P)T(x’!P)++(~7P)$(x’jP)l .

0

(23)

The above is the electric Green’s function of the prob-

lem in the scattering formulation. Through (21) and (22) a

linear relationship is introduced between the amplitude

vectors A and B. The matrix S such that B= SA is the

sought unnormalized scattering matrix. Hence, for Al= 1,

A k+~ = (), We have Skl = Bk. Define

hl=HX(A1= l;Ak+l <O). (24)

The magnetic field at the discontinuity can be obtained by

superposition:

HX(X) = ~ A[hl(x). (25)
[=1

Under the conditions (24), the integral equation (22) re-

duces to the set of ni integral equations

Slul(X) = ~wdx’ %( X, X’)hl(X’). (26)

From a knowledge of the lq’s, the unnormalized scattering

matrix can be determined by imposing the port conditions

(24) on (21):

Sk,[ = dk,, – s#O~ ~~~@)h/(x)dx. (27)

The integral equations (26) cannot yet be solved ana-

lytically. Using the RG variational procedure, however,

we can approach the solution as closely as desired. Let us

introduce first an orthonormal basis {L.(x), n = O,””” } of

“good functions” [11] in the interval O <x < m (in fact, a

complete sequence is sufficient). Using this sequence, we

can express Uk as

with

Q./c=~WL.(x)uk(X)dX.

Also we have

q(X,~)= ~ Pn(p; d) Ln(x)

where

where

and

with

Zmn =

Pn(p; d)=~wdxrp(x, p) Ln(x)

+(x,p)= ~ Pn(p; D )Ln(x)
~=o

Pn(p; D )= ~mdx$(x,p)Ln(x)

%(x,x’) = j zmLm(x)Ln(x’)
m,n=O

[“ (
dx ~~dx’ L~(X)%(X, X’)L~(X’)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

u -u

1=— {x2k ‘o&idh+~mdPZo(P)

. [Pn(p;d)Pn(p;d) +P&;D)F’n(p;D)] }. (35)
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According to (28), (30), (32), and (34), and by means of

the sequence of expanding functions (SEF) {L~}, the

functions u~(x), tp(x, p), and 4(x, p) map onto the infinite

column vectors ~, P(p; d), P(p; D ), respectively, whereas

the Green’s function maps onto the matrix Z. The second

equation in (35) implies interchanging the order of in-

tegration over p and x. This is permissible inasmuch as Z

is a distribution and the Ln’s are “good functions.”

In the RG approach, infinite vectors and matrices are

replaced by their finite truncations (O< n <N). Hence, the

integral equation (26) becomes the finite matrix equation,

slQl = ZA\ (36)

where the vector Al, stands for the expansion of the

unknown function hl, and from (27), the RG variational

expression for the unnorrnalized scattering matrix of the

discontinuity is

Sk,= 13k,– sks,Zok Q:”Z - ‘.QI (37)

which is analogous to the expressions for closed wave-

guides [8] and enjoys variational properties.

Because of the complex nature of the matrix Z, how-

ever, the exact solution is neither a maximum or a minim-

um. The normalized scattering matrix is defined for unit

resistance terminations at the ports, while the rzi accessible

ports of Fig. 2 are closed by the impedances ZO~. In order

to pass to the proper impedance normalization, an ideal

transformer must be connected at each port. Define

2.= diag (ZO~), k=l,..., n (38)

then the normalized scattering matrix is given by

~= Zo” W.S.ZV2 (39)

or

which displays the symmetry required by the reciprocity

of the junction. The magnetic field at the discontinuity

can be derived from (25) and (36).

A similar analysis can be carried out starting again

from (17) and (18) but using the electric field EY instead of

the magnetic field HX. However, attention now must be

paid to the mathematically nontrivial problem of the

proper convergence of the integral over p. The details are

omitted for the sake of brevity.

IV. SCAnERING OF INCIDENT RADIATION AND

COUPLING OF SURFACE WAVES TO THE CONTINUOUS

SPECTRUM

The preceding formulation is easily extended to the case

where radiation is incident on the discontinuity. Consider

a real wave packet incident from the left, at z = O. This

can be expressed in terms of the radiation spectrum for

Z<o.

f(x) =~mdpa(p)cp(x, p). (41)

The field can also be expanded as

~(x) = ~ fnLn(x) (42)
~=o

where

f.=~mdxj(x)L.(x) =~~dpa(p)P.(p;d). (43)

Owing to orthogonality, it is possible to consider any

component of (41) as corresponding to an individual port

of a continuous set merging into one “continuous port.”

Retracing the derivation of the previous section, it is

possible to deduce the unnormalized scattering coefficient

of a p component into the surface waves and of two

components, say, p and p’, among themselves. In the

magnetic field formulation, these are, respectively,

()Skp= – skspZop Q:.Z - lP p,;

(s, = T 1 according as d or D are chosen) (44)

and

‘(‘$)Z-’P(’%)’45)Sp,pr= a(p – p’) – spsp/P p

Unnormalized scattering coefficients are employed so as

to avoid the question of complex normalization for im-

aginary ZO(p).

V. THE DISCRETE REPRESENTATION

A, Laguerre Functions as an Expanding Set

An appropriate complete set of “good functions” is

provided by the normalized Laguerre functions

{
L.(x) = --!-

()
L. ~ e-~,

~ Xo
n=0,1,2,. . .

}

(46)

with

pm(wn(wx=u. (47)
o

The arbitrary scale parameter XO can be adjusted so as to

improve convergence, as will be discussed below. The

coefficients of the expansions (28), (30), and (32) in terms

of the above SEF can be determined analytically and are

given in Appendix I. A similar expansion holds for the

continuous spectrum in the limit of “lightly trapped

waves” (16):

q)m(x, p)= ~ P.~(p)L. (x). (48)
n

The P.m coefficients are also given in Appendix I.

We shall now proceed to determine the scale parameter

X. in (46). For a given truncation N of the expansion (28)

(N+ 1 is just the order of the variational solution), it is

clearly important to be able to represent as closely as

possible the accessible modes. If the latter are ni surface

waves, the error function
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C,(xO)= 1– + ~ f Q:k(xO) >0 (49)
‘Li k=l n=O

gives a measure of the incompleteness of the representa-

tion. Requiring c1 to be a minimum yields an “optimum”

value for XO. The choice of optimization criteria is by no

means unique, and other more elaborate approaches in-

volving the continuum have, in fact, been tested, without

achieving, however, any significant improvement. The

computation of the Green’s matrices for the magnetic

field formulation in terms of SEF (46) is further discussed

in Appendix III.

B. An Alternative SEF

The RG procedure does not require an orthonormal

SEF. Completeness is sufficient. In this connection, it is

interesting to examine the performance of an alternative

complete, nonorthonormal sequence. When the step is

excited by a given surface wave, it is reasonable, for small

steps, to take the incident surface wave as a trial field,

because radiation takes place mainly in the forward direc-

tion, and mode mixing is small.

The obvious extension of the argument is to take the ni

surface waves, propagating at bothsides of the step, as the

first ni functions of the SEF. The sequence is comple-

mented by the Laguerre functions up to the chosen order

of the variational solution ~, i.e.,

{g.:l<n<~}-{ul,..., un,Lo,Lm_z_l}z_l}. (50)

Using the above set, straightforward integration yields

the amplitudes of the expansion of the surface waves

%n=Jm%(~)&(~) (51)

and that of the continuous spectrum

IL(P) = Jm9(xj P)&(x)dx (52)

I%(P) = Jmo(x,k(x)dx. (53)

The above expansions are given explicitly in Appendix II.

The Green’s matrix for the magnetic field formulation,

analogous to (35), becomes

[

n,

Zm= ; ~ Zokqkmqkn + r~Pzo(P)bL(P)Pn(P)
L (k=l Jo

The performance of the above set

V-A are compared in Section VII.

1+PL(P)Pi(P) ] . (54)

and of that of Section

The scale parameter XOstill occurs in (50). Its optimiza-

tion takes place according to the following criterion. As

the surface waves constitute the first ni functions of the

sequence, it is required that the remaining functions

Lo, ”.. , LN-Z - ~ be as close to orthogonal as possible to

the former.

VI. RADIATION AT mm STEP

The radiation loss of the step can be computed directly

from a knowledge of the scattering matrix (40). In terms

of the amplitudes of the incoming surface waves, given by

the vector A and of the outgoing surface waves (vector B)

the loss is given by

W=;(A+.Z; l.A– B+. Z;l.B) (55)

where + denotes Hermitian conjugation. By means of

(18)-(21) and (25), it can be shown that the above expres-

sion is identical to that obtained from a consideration of

the Poynting vector of the radiation spectrum, which, in

turn, is identical to the integral of the power density over

the radiative part of the spectrum (p <nzko).

The computation of the far field is based on a saddle

point evaluation of the far field in each half-space. From

(9) and (17) and in account of the even parity with respect

to p, the y-component of the electric field of the con-

tinuum spectrum can be written as

‘(P) ~-j[p(x-d)+a(p) +fl.lcEY~(x,z) = -
J

‘wdp—
m -. B(P)

(56)

Passing to polar coordinates,

x=rsinf3, z=rcOse

p= n,ko sin w, /?= n,lco cos w (57)

(56) becomes

qyx>z)= ~ J “MJ%COS(W–e )(58)~ +jm fij(~)e-J 2 0

v% _;_J.

where

j(~) = d(n,Ko sin ~)~-~[~(w)-n,kodsinw]o (59)

In the limit kor>> 1, the far field can be evaluated by the

saddle-point method after deforming the integration path
in the complex w-plane into a steepest descent contour

(SDC), as described in [12, pp. 459-470] and [6, pp.

108– 112]. Care, however, must be taken that in deforming

the contour no singularity is crossed in the w-plane. These

are of two kinds: branch lines or poles (improper modes).

The former kind occurs at w=? r/2, where dp/dw =0.

Hence we must keep 10I <7r/2. Poles corresponding to

improper modes are crossed for O smaller than some

critical angle. In the same interval of angles, however, the

improper modes make no contribution to the radiation

field, as their field tends exponentially to zero for increas-

ing r. The far field outside the slab is then given by

and the radiation pattern is proportional to Id 12, i.e., the

spectral power density of the radiation modes. Analogous

considerations hold for z <O.
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TABLE I
SCATTERINGMATRIXOF STRP BETWEENMONOMODE

SLMN-ORTHONOw BASISOF SECTIONV-A: MAGNETICFIELD
FoRMuLAmoN;d/D= 0.2, n2koD = 1, OD = 2

IN Ir,l% +P, -TI(RADI ITI% ~T lr2 I % + r2 RAD LOSSO/O

o 20.88 -.0865 94.22 -.0149 26.55 .0413 6.87

1 20.77 -.0920 93.77 -.0135 25.28 .0540 7.77

2 20.72 -.1038 93.70 -.0099 24.73 .0532 7.92

3 20.49 -.0802 94.10 -.0o96 24.82 .0648 7.25

4 20.56 -.0832 94.14 -.0082 24.83 .0737 7.13

5 20.41 -.0859 94.15 -.0076 24.79 .’0759 7.19

6 20.40 -.0858 94.15 -.0076 24.78 .0759 7.19

7 20.40 -.0858 94.16 -.0075 24.79 .0763 7.18

8 20.40 -.0860 94.16 -.0075 24.79 .0764 7.18

20 20.40 -.0860 94.16 -.0075 24.79 .0764 7.18

TABLE II
SCATIIXUNGMAITUXOFSTEPBIYITWBNMONOMODE

SLABS-ORTHONORMALBASISOF%CITONV-B: ELECTRICFIELD
FORMULATION; d/D =0.2, rr2koD = 1,OD = 2

N Irll% +rl -mlRAD1 ITI% +T lr217. +r2 RAD LOSS %

O 22.56

1 19.66

2 20.35

j 20.52

4 20.28

5 20.69

6 20.14

7 20.45

8 20.33

-.0704

-.0593

-.0868

-.0640

-.0698

-.0923

-.0771

-.1001

-.0738

96.99 .0205 21.50 .1159

94.52 .0055 23.24 .1813

93.78 -.0153 25.05 .0832

94.35 -.0018 24.51 .0610

94.10 -.0038 24.80 .0663

94.44 -.0084 24.52 .0866

93.91 -.0059 25. o2 .0763

94.22 -.0103 24.72 .0879

94.07 -.0050 24.88 .0693

0.83

6.80

7.92

6.72

7.34

6.53

7.76

7.05

‘1. 37

VII. EXAMPLES AND NUMERICAL RESULTS

A. Accuracy Tests and Convergence of the Variational

Solution

The results of a convergence test for a large step discon-

tinuity are presented in Table I. For the choice of the

parameters in the table, both slabs are single moded. The

radiation losses refer to incidence from the left. The

radiation losses for incidence from the right are easily

deduced from these data. For N= 8, all the above quanti-

ties, which completely characterize the junction, have

reached their convergence values within four significant

figures. For the sake of comparison, the same quantities

were computed using the same basis but in the electric

field formulation. The results are shown in Table II. As

expected, from the distributional character of the Green’s

function, the convergence is slower in this formulation.

On account of this, all the following results were com-

puted using the magnetic field formulation,

It is also interesting to carry out the same computation

utilizing the complete, but not orthonormal basis dis-

cussed in Section V-B. The results are shown in Table 111.

In particular, N= O means that the discontinuity field is

assumed to be that of the incoming surface wave. This
commonly used approximation is inadequate for sizeable

steps. A considerably better approximation is provided by

assuming the discontinuity field to be a linear combina-

tion of the incident and transmitted surface waves (N = 1).

For N= 6, the results are virtually identical to those of

+x

dp2#jj7JJD
‘ ,/

nzKoD=l
vD=2

d/D=02

:
—

05 _N=Oleft

o
0 02 05 1 2 5 10 20

x/D _

Fig. 3. Transverse electric field at discontinuity n2koD = 1, OD = 2,
d/D =0.2.

TABLE III
SCAITHUNG MATRIX OF STEP BKIWSEN MONOMODE

SL.AES-NONORTHONORMAL BASIS OF SECTION VI: MAGNSTIC

FIELD FORMULATION; d/D =0.2, n2koD = 1; (n; – n~)k~D2 =4

N I r, I-L + P, TC(RAD] ITI $T lr2 h. +r2 RAD L0SS ‘1.

O 19.68

1 20.54

2 20.61

3 20.42

4 20.39

5 20.39

6 20.40

7 20.40

8 20.40

-.1282

-.0779

-.0840

-.0825

-.0835

-.0862

-.0861

-.0862

-.0861

91.33

93.92

93.87

94.13

94.17

94.16

94.16

94.16

94.16

-.0210

-.0097

-.0084

-.0086

-.0083

-.0074

-.0075

-.0074

-.0075

30.27 .0485 12.7

24.43 .0650 7.57

24.39 .0697 7.64

24.76 .0703 7.22

24.81 .0722 7.16

24.79 .0765 7.18

24.78 .0764 7.18

24.78 .0766 7.19

24.79 .0765 7.18

Table I, considering the finite accuracy of the numerical

computation.

The set of Section V-A will be employed in the follow-

ing examples. The last test consisted in checking how well

the continuity of EY at z = O, as expressed by (17), was

satisfied by a given variational solution of the integral

equation (22) for HX. In Fig. 3 the moduli of EY at either

side of the step are plotted versus x/D for N= 0.5. In the

latter case, the two curves are no longer distinguishable.

For reference, the surface wave fields Ul, U2 are also

plotted.

B. Examples

The variation of the scattering matrix of the step for

varying width of the smaller guide d is illustrated in Figs.

4 and 5. Fig. 4 shows the moduli of the reflection and

transmission coefficients, as well as the radiation losses of

the step. Since this example refers to fairly high refractive

slabs in air, radiation losses are low for less than sizeable

steps. Up to moderate steps (d/D 20.5), for the present

values of the parameters, the moduli of the reflection

coefficients for incidence from the left (l_’l) and from the
right (172) are virtually identical. Their value is closely

approximated by the reflection coefficient of an ideal

admittance step without mode conversion

r,=-r,=~, (61)
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Fig. 4. Amplitudes of the reflection and transmission wefficients of a
step between monomode slabs and radiation lossesversusstep height
N= 5, n2koD = 1, OD =2.
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Fig. 5. Phasesof the reflection and transmission coefficients of the step
of Fig. 4.

As d decreases, [I’z] keeps increasing in excess of the

above approximation up to its limiting value, the reflec-

tion from a semi-infinite slab. II’, I keeps increasing below

(61). Then, after going though a maximum, it goes to zero,

as it should, since the surface wave is no longer guided for

d= O. The transmission coefficient also decreases for in-

creasing step size, since the energy increasingly leaks out

in the form of radiation, as can be seen from the plots of

the radiation loss,

The argument of the reflection coefficient, given in Fig.

5, is not negligible, even for small steps. It is noteworthy
that in the region where the phase goes through two

turning points, the accurate variational solution predicts a

sizeable deviation of the modulus of the transmission

coefficient from the “mode projection” approximation of

[1], which is otherwise quite fair, even for large steps, The

phase of the transmission coefficient is rather small, in

this case less than ().01 rad. The angular dependence of

the radiation pattern is illustrated in Fig. 6 for N= O, 5, 8.

Unit incidence from the left is assumed. While the only

peak is indeed forward, backscattered radiation is not

negligible.

Fig. 6. Convergenceof the radiation pattern (incidence from left) for
increasing order of the variational solution n2kOD = 1,OD = 2.

Fig. 7.
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The behavior of the step discontinuity under multimode

excitation is illustrated in Fig. 7, where the moduli of the
elements of the scattering matrix are plotted versus the

“normalized frequency” VD = (n; – n;)112koD. k V in-

creases beyond VD = T, the thicker slab allows two modes

to propagate, whereas the thinner slab remains mono-

mode. Even before the cutoff value is reached, the immi-

nent presence of the second mode is felt, as shown by the

inflection of IS1~I and IS12/ for incidence from the left

(port 1). This is accompanied by increasing radiation
losses. Similar features reappear around VD = 277, where a

third mode can propagate in the thicker slab.
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VIII. CONCLUSION

The scattering of TE modes by a symmetric step dis-

continuity in a planar dielectric waveguide has been

treated by means of a rigorous variational solution. Two

sequences of expanding functions have been investigated.

The numerical examples demonstrate that rapid conver-

gence is achieved, using either of the two choices when

adopting a magnetic field formulation. Results are pre-

sented on the scattering of surface waves for varying step

ratio and “normalized” frequency. Also the limitations of

small step approximations, particularly with regard to

phase and radiation properties, are illustrated.

In particular, the results on the radiation characteristics

show that backward radiation cannot be neglected for

sizeable steps, An accurate analysis like the one presented

becomes mandatory when dealing with large steps, with

multiple interacting steps, even if the steps are moderate,

or with multiple surface wave excitation. The extension to

asymmetric steps presents no difficulty. The same tech-

nique can also be applied to other important discontinui-

ties in dielectric waveguides.

APPENDIX I

THE COEFFICIENTS P. AND Q. OF SECTION V-A

From [12, pp. 92, 844, and 1037], after some algebra, we

obtain

Pn@(p) =
r

~ (-1)”
cos [(2n+ 1) tan-l 2P.XO]

(+ +p:x’)’/2

(Al)

[

Qn=a~ (-1)”
COS[(2n+ 1) tal_-l2KX~]

(+ +/c’.x;)’/’

n

()

+ > (–l)ke-&@k <
k=O X.

“[COS~d cos [(k+l) tan-l 2KXo+Kd]

(++ yxo)k+’ - (:+ K2X;)(k+ ’)/2 1}
(A2)

r[2X0 (–1)” cos (2n+ 1) tan-l 2UX0
PH(p; d)= — —

77 c (++o’x;)’/2

n

( ){

+ ~ (–l)ke–&L~k_k <
cos [(k+l) tan-l 2pxO+a]

k=O X.
(: +p’x;)(k +’)/’

The finite sum in (A3) goes rapidly to zero for increasing

so that for p’>> v’, (A3) reduces to (Al).

APPENDIX II

THE COEFFICIENTS q, p, p’, OF SECTION V-B

The elements of the expansion in terms of the set of

Section V-B are

%.= L,n, I<m<nl, I<n<nl

[

1 sin (fcm+Kn)d + Sin (Km– Kn)d
=a~a~—

2 Km + Kn Km — Kn
1

COS K d
+ ~:+~n [e’m(’-~ ‘(– YM COS K#+ K“ Sin K.D )

2

+ ym cos (K~d)– Kn Sin Knd]

+
}

COS K~d”ws KnD eym(&D ) ,

Yrn + Y.

l<m<nl n[<n <ni

a. 1

[

sin (K. + u)d + sin (Kn– u)d
.

VG @>d ) Kn+O Kn— O
1

+ A [sin (( Kn+p)D+o(p,d))
Kn+p

–sin (K~d+a(p,d))]

+ COS &(p, d)
[sin (p- K.) D-sin (p- K.)d]

p–Kn

+ 2 cos ICnD
Y:+P2 [Yn cos(8(p,d)+pD)

–psin(8(p, d)+pD)]

ni<n <n, (A4)

1 cos [(k+ 1) tan-l 2u.xO+ud]

II

where (O(p, d)=a(p, d)–pd).
—

T
(A3)

(+ +o’x:)(k+ ”/2 “ Pn(p)=Pn_n, -l(p, d), ni<n <~. (A5)
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([1
[m-rl [m-nI-l

sin (K. +u)d + sin (K. –a)d
Pn(p) = ~ 1 Lmn=+(–l)m+”xo

-1

m+n
~ b,+ ~ b,+ ,~, b,

~ c(p,D ) Kn+O Kn— O k=l k=l

2 COS Knd 1~ [e,n(d-~ J(u sin UD – y. cos rYD )
+ C(P>D) Y:+O

1

-(u sin ad- y. cos ud)] + 2~~~dp7n(’-~ )

1[yncosa(p,D)-psin a(p,D)] , I<n<nl

[

o, ni<n <ni

= P.-.l(P,D), ), ni<n <N.
(A6)

APPENDIX III

COMPUTATION OF THE GREEN’S MATRIX

The computation of the Green matrices (35) requires

integration over an infinite interval. It is advantageous to

extract analytically the contribution of the integral for

large values of p. For the sake of compactness, define

tnrr(P) =f’rn(P; d)~n(P; d)+ pm(P:~ )P.(P; D ), (147)

Let Z’ denote the contribution of the continuous

spectrum in (35)

2z:n = 6Jp~
J

nzko h (P)

0 @-dp

where pO>>max(n#O, o). The first integral represents the

contribution of the radiative part of the continuous

spectrum. The second integral and the last term represent

the contribution of the reactive part of the continuous

spectrum. The last term, in particular, is a purely induc-

tive asymptotic contribution. Noting that P(p; d), P(p; D )

+P ‘(p) as p2>>02, we have

m ‘mm(P) ‘.Q(P) dp
Lm. =2~ ~ .

Po

(A9)

The above integral can be evaluated (thanks to [12, p.

143]) and the result is

m+n+l 1

+ ~ b~ +4 in cosec TO

I

(A1O)
k=l

where

yJO= tan- 1 2poxo

b,=; [(–1)’–cos2krpO].

The singularity in (A.5) is eliminated (and

tional efficiency improved) by setting:

p= n2k0 sin t, p < n2ko

= n2ko cosh t, p > n2kW
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